

Features

- 8 simultaneously sampled inputs
- True bipolar analog input ranges: ±10 V, ±5 V
- 5 V analog power supply and 2.3 V to 5 V digital power supply
- Analog input clamp protection
- Input buffer with 1 M Ω analog input impedance
- Second-order antialiasing analog filter
- On-chip accurate reference and reference buffer
- 16-bit ADC with 200 kSPS on all channels
- Oversampling capability with digital filter
- Flexible parallel/serial interface
- SPI/QSPI™/MICROWIRE™/DSP compatible
- 7 kV ESD rating on analog input channels
- 93.5 dB SNR, -107 dB THD
- ±0.3 LSB INL, ±0.5 LSB DNL
- Low power: 130 mW
- Standby mode: 24.6 mW
- Temperature range: −40°C to +85°C
- 64-lead LQFP package

Applications

- Semiconductor Automatic Test Equipment(ATE)
- Power-line monitoring and protection systems
- Multiphase motor control
- Instrumentation and control systems
- Multiaxis positioning systems
- Data acquisition systems

Description

The CBM76AD06 is 16-bit, simultaneous sampling, analog-to-digital data acquisition systems (DAS) with eight channels. Each channel contains analog input clamp protection, a second-order antialiasing filter, a track-and-hold amplifier, a 16-bit charge redistribution successive approximation analog-to-digital converter (ADC), a flexible digital filter, a 2.5 V reference and

reference buffer, and high speed serial and parallel interfaces. The CBM76AD06 operate from a single 5 V supply and can accommodate ± 10 V and ± 5 V true bipolar input signals while sampling at throughput rates up to 200 kSPS for all channels. The input clamp protection circuitry can tolerate voltages up to ± 16.5 V. Each channel has 1 M Ω analog input impedance regardless of sampling frequency. The single supply operation, on-chip filtering, and high input impedance eliminate the need for driver op amps and external bipolar supplies. The CBM76AD06 antialiasing filter has a 3 dB cutoff frequency of 22 kHz and provides 40 dB antialias rejection when sampling at 200 kSPS. The flexible digital filter is pin driven, yields improvements in SNR, and reduces the 3 dB bandwidth.

Catalog

Features	
Applications	
Description	
Catalog	
Revision Log	
Functional Block Diagram	5
Electrical characteristics	
Timing characteristics	
Timing Diagram	
Absolute Maximum Ratings	16
Pin Configuration and Function Descriptions	
Typical Performance Characteristics	
Applications Information	
Package Outline Dimensions	
LQFP-64	34
Package/Ordering Information	

Revision Log

Version	Revision date	Change content	Reason for Change	Modified by	Reviewed By	Note
V1.0	2024.6.29			WW	LYL	Initial version
V1.1	2025.6.9	Update the product pin description and functional block diagram.	Error update	ww	LYL	
V1.2	2025.10.15	Update the error of the product model.	Error update	ww	LYL	

Function Block Diagram

This product adopts LQFP-64 package. It is specified over the -40°C to +85°C

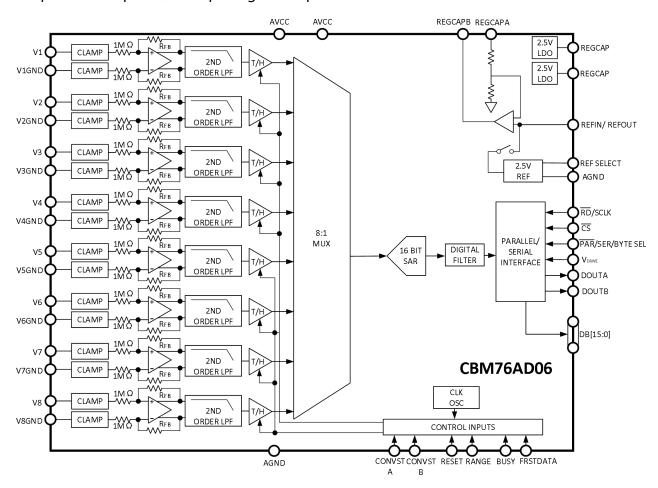


Figure 1. Functional Block Diagram

Electrical characteristics

 V_{REF} = 2.5 V external/internal, AV_{CC} = 4.75 V to 5.25 V, V_{DRIVE} = 2.3 V to 5.25 V, f_{SAMPLE} = 200 kSPS, T_A = -40°C to +85°C, unless otherwise noted.

Table1.

Parameter	Test Conditions	Min	Тур	Max	Unit
DYNAMIC PERFORMANCE	f _{IN} = 1 kHz sine wave				
	Oversampling by 16; $\pm 10 \text{ V}$ range; $f_{IN} = 130 \text{ Hz}$	91.3	93.5		dB
Signal-to-Noise Ratio(SNR) ^{1,}	Oversampling by 16; ± 5 V range; $f_{IN} = 130$ Hz	91.6	93.5		dB
	No oversampling; ±10 V Range	87	89.7		dB
	No oversampling; ±5 V range	87.2	89		dB
Signal-to-(Noise	No oversampling; ±10 V range	87	89		dB
+Distortion) (SINAD) ¹	No oversampling; ±5 V range	87.1	89		dB
Dynamic Banga	No oversampling; ±10 V range		90.5		dB
Dynamic Range	No oversampling; ±5 V range		90		dB
Total Harmonic Distortion (THD) ¹			-107	-95	dB
Peak Harmonic or Spurious Noise (SFDR) ¹			-108		dB
Intermodulation Distortion (IMD) 1	fa = 1 kHz, fb = 1.1 kHz				
Second-Order Terms			-107		dB
Third-Order Terms			-103		dB
Channel-to-Channel Isolation1	f_{IN} on unselected channels up to 160 kHz		-95		dB
ANALOG INPUT FILTER					
	−3 dB, ±10 V range		23		kHz
Full Power Bandwidth	−3 dB, ±5 V range		15		kHz
	-0.1 dB, ±10 V range		10		kHz

	-0.1 dB, ±5 V range		5		kHz
	±10 V range		11		μs
t _{GROUP DELAY}	±5 V range		15		μs
DC ACCURACY		'		'	'
Resolution	No missing codes	16			Bits
Differential Nonlinearity ¹			±0.3	±1.1	LSB ³
Integral Nonlinearity ¹			±0.5	±2.3	LSB
	±10 V range		±6		LSB
Total Unadjusted Error (TUE)	±5 V range		±12		LSB
	External reference		±8.6	±33	LSB
Positive Full-Scale Error 1, 4	Internal reference		±8.6		LSB
	External reference		±2		ppm/°C
Positive Full-Scale Error Drift	Internal reference		±7		ppm/°C
Positive Full-Scale Error	±10 V range		5	32	LSB
Matching ¹	±5 V range		16	40	LSB
	±10 V range		±1	±6	LSB
Bipolar Zero Code Error ^{1, 5}	±5 V range		±3	±12	LSB
D: 1 7 6 1 5 D:W	±10 V range		10		μV/°C
Bipolar Zero Code Error Drift	±5 V range		5		μV/°C
Bipolar Zero Code Error	±10 V range		1	8	LSB
Matching ¹	±5 V range		6	22	LSB
	External reference		±8	±32	LSB
Negative Full-Scale Error ^{1, 4}	Internal reference		±8		LSB
Negative Full-Scale Error	External reference		±4		ppm/°C
Drift	Internal reference		±8		ppm/°C
Negative Full-Scale Error	±10 V range		5	32	LSB
Matching ¹	±5 V range		15	38	LSB
ANALOG INPUT					
Innut Valta Day	RANGE = 1			±10	V
Input Voltage Ranges	RANGE = 0			±5	V
Analan land Commit	10V		5.2		μA
Analog Input Current	5V		2.2		μA
Input Capacitance ⁶			5		pF

Input Impedance	See the Analog Input section		1		МΩ
REFERENCE INPUT/OUTPUT					
Reference Input Voltage Range	See the ADC Transfer Function section	2.475	2.5	2.525	V
DC Leakage Current				±1	μA
Input Capacitance ⁶	REF SELECT = 1		7.5		pF
Reference Output Voltage	REFIN/REFOUT		2.49/ 2.505		V
Reference Temperature Coefficient			±10		ppm/°C
LOGIC INPUTS		<u>'</u>	'	'	
Input High Voltage (V _{INH})		0.7 × V _{DRIVE}			V
Input Low Voltage (V _{INL})				0.3 × VDRIV E	V
Input Current (I _{IN})				±2.3	μA
Input Capacitance (C _{IN}) ⁶			5		pF
CONVERSION RATE					
Conversion Time	All eight channels included; see Table 2		4		μs
Track-and-Hold Acquisition Time			1		μs
Throughput Rate	Per channel, all eight channels included			200	kSPS
POWER REQUIREMENTS					
AV _{CC}		4.75		5.25	V
V_{DRIVE}		2.3		5.25	V
TOTAL	Digital inputs = 0 V or V _{DRIVE}				
Normal Mode (Static)			16.4	25	mA
Normal Mode (Operational) ⁷	f _{SAMPLE} = 200 kSPS		22	28	mA

Standby Mode		 5	10	mA
Shutdown Mode		 1.8	8	μΑ
Power Dissipation				
Normal Mode (Static)		 81.7	115. 5	mW
Normal Mode (Operational)	fSAMPLE = 200 kSPS	 100	142	mW
Standby Mode		25	42	mW
Shutdown Mode		10	31.5	μW

¹ See the Terminology section.

Timing Specifications

 A_{VCC} = 4.75 V to 5.25 V, V_{DRIVE} = 2.3 V to 5.25 V, VREF = 2.5 V external reference/internal reference, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted.1

Table 2.

Parameter	Limit at T_{MIN} , T_{MAX} (0.1 × V_{DRIVE} and 0.9 × V_{DRIVE} Logic Input Levels)			Limit at T_{MIN} , T_{MAX} (0.3 × V_{DRIVE} and 0.7 × V_{DRIVE} Logic Input Levels)			Unit	Description
	Min	Тур	Ma x	Min	Тур	Max		

² This specification applies when reading during a conversion or after a conversion. If reading during a conversion in parallel mode with VDRIVE = 5 V, SNR typically reduces by 1.5 dB and THD by 3 dB.

 $^{^3}$ LSB means least significant bit. With ± 5 V input range, 1 LSB = 152.58 μV. With ± 10 V input range, 1 LSB = 305.175 μV.

⁴ These specifications include the full temperature range variation and contribution from the internal reference buffer but do not include the error contribution from the external reference.

⁵ Bipolar zero code error is calculated with respect to the analog input voltage. See the Analog Input Clamp Protection section.

⁶ Sample tested during initial release to ensure compliance.

⁷ Operational power/current figure includes contribution when running in oversampling mode.

PARALLEL/SERIAL/BYTE MODE											
								1/throughput rate			
t _{CYCLE}			5			5	μs	Parallel mode, reading during or after conversion; or serial mode: $V_{DRIVE} = 3.3 \text{ V}$ to 5.25 V, reading during a conversion using $D_{OUT}A$ and $D_{OUT}B$ lines			
						9.4	μs	Serial mode reading after a conversion; VDRIVE = 2.7 V			
			9.7			10.7	μs	Serial mode reading after a conversion; VDRIVE = 2.3 V , $D_{\text{OUT}}A$ and $D_{\text{OUT}}B$ lines			
t _{CONV} ²								Conversion time			
	3.45	4	4.2	3.45	4	4.2	μs	Oversampling off;			
		3			3			Oversampling off;			
		2			2			Oversampling off;			
	7.87		9.1	7.87		9.1	μs	Oversampling by 2;			
t _{CONV} ²	16.05		18.8	16.05		18.8	μs	Oversampling by 4;			
	33		39	33		39	μs	Oversampling by 8;			
	66		78	66		78	μs	Oversampling by 16;			
	133		158	133		158	μs	Oversampling by 32;			
	257		315	257		315	μs	Oversampling by 64;			
t _{WAKE-UP} STANDBY			100			100	μs	STBY rising edge to CONVST x rising edge; power-up time from standby mode			
twake-up shutdown											
Internal Reference			30			30	ms	STBY rising edge to CONVST x rising edge; power-up time from shutdown mode			
External Reference			13			13	ms	STBY rising edge to CONVST x rising edge; power-up time from shutdown mode			
t _{RESET}	50			50			ns	RESET high pulse width			

t _{OS_SETUP}	20			20			ns	BUSY to OS x pin setup time			
t _{os_Hold}	20			20			ns	BUSY to OS x pin hold time			
t ₁			40			45	ns	CONVST x high to BUSY high			
t ₂	25			25			ns	Minimum CONVST x low pulse			
t ₃	25			25			ns	Minimum CONVST x high pulse			
t ₄	0			0			ns	BUSY falling edge to $\overline{\text{CS}}$ falling edge setup time			
t ₅ ³			0.5			0.5	ms	Maximum delay allowed between CONVST A, CONVST B rising edges			
t ₆			25			25	ns	Maximum time between last $\overline{\text{CS}}$ rising edge and BUSY falling edge			
t ₇		25			25		ns	Minimum delay between RESET low to CONVST x high			
PARALLEL/BYTE READ OPERATION											
t ₈	0			0			ns	CS to RD setup time			
t ₉	0			0			ns	CS to RD hold time			
								RD low pulse width			
	16			19			ns	VDRIVE above 4.75 V			
t ₁₀	21			24			ns	VDRIVE above 3.3 V			
	25			30			ns	VDRIVE above 2.7 V			
	32			37			ns	VDRIVE above 2.3 V			
t ₁₁	15			15			ns	RD high pulse width			
t ₁₂	22			22			ns	CS high pulse width (see Figure 5); CS and RD linked			
								Delay from CS until DB[15:0] three-state disabled			
			16			19	ns	VDRIVE above 4.75 V			
t ₁₃			20			24	ns	VDRIVE above 3.3 V			
			25			30	ns	VDRIVE above 2.7 V			
			30			37	ns	VDRIVE above 2.3 V			
t ₁₄ ⁴								Data access time after RD falling			

						edge
		 16		 19	ns	VDRIVE above 4.75 V
		 21		 24	ns	VDRIVE above 3.3 V
		 25		 30	ns	VDRIVE above 2.7 V
		 32		 37	ns	VDRIVE above 2.3 V
t ₁₅	6	 	6	 	ns	Data hold time after RD falling edge
t ₁₆	6	 	6	 	ns	CS to DB[15:0] hold time
t ₁₇		 22		 22	ns	Delay from $\overline{\text{CS}}$ rising edge to DB[15:0] three-state enabled
SERIAL READ OPERA	ATION					
		 		 		Frequency of serial read clock
		 23.5		 20	MH z	VDRIVE above 4.75 V
f _{SCLK}		 17		 15	MH z	VDRIVE above 3.3 V
		 14.5		 12.5	MH z	VDRIVE above 2.7 V
		 11.5		 10	MH z	VDRIVE above 2.3 V
t ₁₈		 		 		Delay from \overline{CS} until DOUTA/DOUTB three-state disabled/delay from \overline{CS} until MSB valid
-10		 15		 18	ns	VDRIVE above 4.75 V
		 20		 23	ns	VDRIVE above 3.3 V
		 30		 35	ns	VDRIVE above 2.7 V
		 		 		Data access time after SCLK rising edge
t ₁₉ ⁴		 17		 20	ns	VDRIVE above 4.75 V
		 23		 26	ns	VDRIVE above 3.3 V

		 27		 32	ns	VDRIVE above 2.7 V
		 34		 39	ns	VDRIVE above 2.3 V
t ₂₀	0.4	 	0.4	 	ns	SCLK low pulse width
	t _{SCLK}		t _{SCLK}			
t ₂₁	0.4	 	0.4	 	ns	SCLK high pulse width
	t _{SCLK}		t _{SCLK}			
t ₂₂	7	 	7	 		SCLK rising edge to DOUTA/DOUTB valid hold time
t ₂₃		 22		 22	ns	CS rising edge to DOUTA/DOUTB
						three-state enabled
					ns	Delay from CS falling edge until
						FRSTDATA three-state disabled
		 15		 18	ns	VDRIVE above 4.75 V
t ₂₄		 20		 23	ns	VDRIVE above 3.3 V
		 25		 30	ns	VDRIVE above 2.7 V
		 30		 35	ns	VDRIVE above 2.3 V
t ₂₅		 		 	ns	Delay from RD falling edge to
						FRSTDATA high
		 15		 18	ns	VDRIVE above 4.75 V
		 20		 23	ns	VDRIVE above 3.3 V
		 25		 30	ns	VDRIVE above 2.7 V
		 30		 35	ns	VDRIVE above 2.3 V
		 		 		Delay from RD falling edge to FRSTDATA high
		 16		 19	ns	VDRIVE above 4.75 V
t ₂₆		 20		 23	ns	VDRIVE above 3.3 V
		 25		 30	ns	VDRIVE above 2.7 V
		 30		 35	ns	VDRIVE above 2.3 V
t ₂₇		 		 		Delay from RD falling edge to FRSTDATA low
		 19		 22	ns	VDRIVE = 3.3 V to 5.25V

	 	24	 	29	ns	VDRIVE = 2.3 V to 2.7V
	 		 			Delay from 16th SCLK falling edge to FRSTDATA low
t ₂₈	 	17	 	20	ns	VDRIVE = 3.3 V to 5.25V
	 	22	 	27	ns	VDRIVE = 2.3 V to 2.7V
t ₂₉	 	24	 	29	ns	Delay from CS rising edge until FRSTDATA three-state enabled

¹ Sample tested during initial release to ensure compliance. All input signals are specified with tR = t_F = 5 ns (10% to 90% of VDRIVE) and timed from a voltage level of 1.6 V.

Timing Diagram

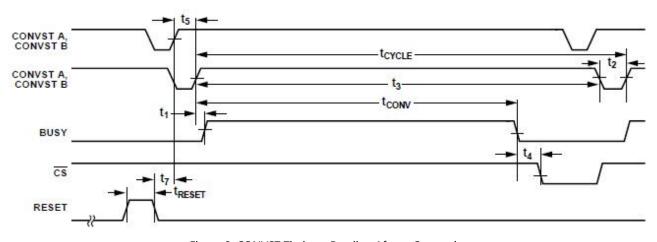


Figure 2. CONVST Timing—Reading After a Conversion

 $^{^2}$ In oversampling mode, typical tCONV for the CBM76AD06-6 and CBM76AD06-4 can be calculated using ((N × tCONV) + ((N – 1) × 1 μs)). N is the oversampling ratio. For the CBM76AD06-6, tCONV = 3 μs; and for the CBM76AD06-4, tCONV = 2 μs.

³ The delay between the CONVST x signals was measured as the maximum time allowed while ensuring a <10 LSB performance matching between channel sets.

⁴ A buffer is used on the data output pins for these measurements, which is equivalent to a load of 20 pF on the output pins.

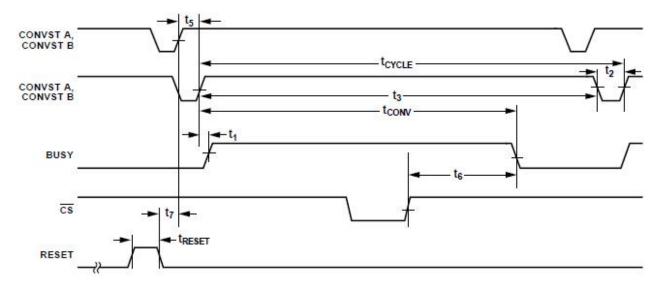


Figure 3. CONVST Timing—Reading During a Conversion

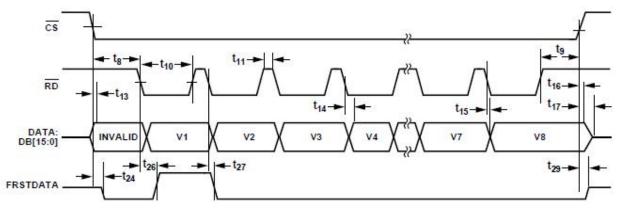


Figure 4. Parallel Mode, Separate CS and RD Pulses

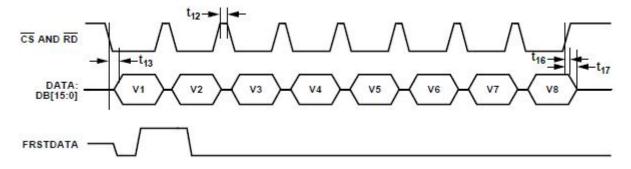


Figure 5. CS and RD, Linked Parallel Mode

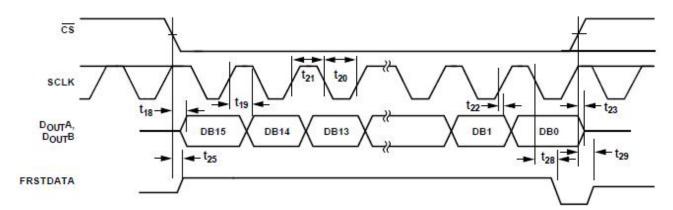


Figure 6. Serial Read Operation (Channel 1)

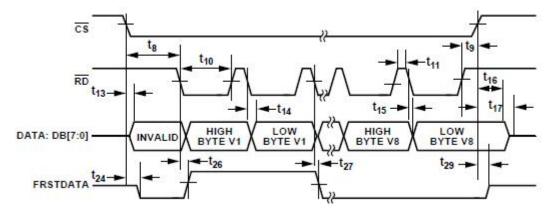


Figure 7. BYTE Mode Read Operation

Absolute Maximum Ratings

Parameter	Rating
AV _{CC} to AGND	-0.3 V to +7 V
V _{DRIVE} to AGND	-0.3 V to AV _{CC} +0.3 V
Analog Input Voltage to AGND ¹	±16.5 V
Digital Input Voltage to AGND	-0.3 V to V _{DRIVE} + 0.3 V
Digital Output Voltage to AGND	-0.3 V to V _{DRIVE} + 0.3 V
REFIN to AGND	$-0.3 \text{ V to AV}_{CC} + 0.3 \text{ V}$
Input Current to Any Pin Except Supplies1	±10 mA
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Junction Temperature	150°C
Pb/SN Temperature, Soldering Reflow (10 sec to 30 sec)	240 (+0)°C
Pb-Free Temperature, Soldering Reflow	260 (+0)°C
ESD (All Pins Except Analog Inputs)	2 kV

¹ Transient currents of up to 100 mA do not cause SCR latch-up.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE: θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. These specifications apply to a 4-layer board.

Package Type	θ_{JA}	θ_{JC}	Unit
64-Lead LQFP	45	11	(°C/W) ¹

Pin Configuration and Function Descriptions

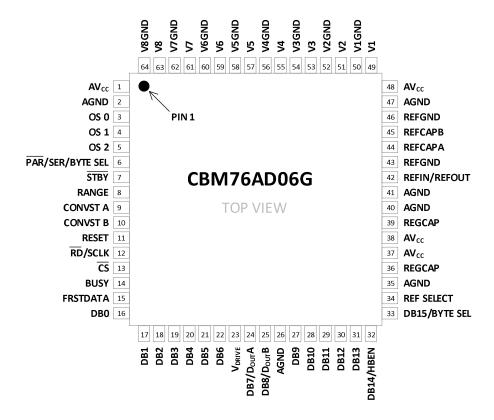


Figure 8. Pin Configuration, Top View

Pin Function Descriptions

Pin No.	Mnemonic	Description
	AV _{cc}	Analog Supply Voltage, 4.75 V to 5.25 V. This supply
1 27 20 40		voltage is applied to the internal front-end amplifiers
1,37,38,48		and to the ADC core. These supply pins should be
		decoupled to AGND.
		Analog Ground. These pins are the ground reference
	AGND	points for all analog circuitry on the CBM76AD06. All
2,26,35,40,41,47		analog input signals and external reference signals
		should be referred to these pins. All six of these AGND
		pins should connect to the AGND plane of a system.
		Oversampling Mode Pins. Logic inputs. These inputs are
5,4,3	OS [2:0]	used to select the oversampling ratio. OS 2 is the MSB
		control bit, and OS 0 is the LSB control bit. See the

		Digital Filter section for more details about the
		oversampling mode of operation and Table 5 for
		oversampling bit decoding.
		Parallel/Serial/Byte Interface Selection Input. Logic
		input. If this pin is tied to a logic low, the parallel
		interface is selected. If this pin is tied to a logic high, the
		serial interface is selected. Parallel byte interface mode
		is selected when this pin is logic high and DB15/BYTE
		SEL is logic high (see Table 4).In serial mode, the
		RD/SCLK pin functions as the serial clock input. The
6	PAR /SER/ BYTE SEL	DB7/DOUTA pin and the DB8/DOUTB pin function as
		serial data outputs. When the serial interface is selected,
		the DB[15:9] and DB[6:0] pins should be tied to ground.
		In byte mode, DB15, in conjunction with PAR/SER/BYTE
		SEL, is used to select the parallel byte mode of
		operation (see Table 4). DB14 is used as the HBEN pin.
		DB[7:0] transfer the 16-bit conversion results in two RD
		operations, with DB0 as the LSB of the data transfers.
		Standby Mode Input. This pin is used to place the
	STBY	CBM76AD06 into one of two power-down modes:
		standby mode or shutdown mode. The power-down
		mode entered depends on the state of the RANGE pin,
7		as shown in Table 3. When in standby mode, all circuitry,
		except the on-chip reference, regulators, and regulator
		buffers, is powered down. When in shutdown mode, all
		circuitry is powered down.
		Analog Input Range Selection. Logic input. The polarity
		on this pin deter-mines the input range of the analog
8		input channels. If this pin is tied to a logic high, the
	RANGE	analog input range is ±10 V for all channels. If this pin is
		tied to a logic low, the analog input range is ± 5 V for all
		channels. A logic change on this pin has an immediate
		effect on the analog input range. Changing this pin
		during a conversion is not recommended for fast
		daming a conversion is not recommended for last

		throughput rate applications. See the Analog Input
		section for more information.
		Conversion Start Input A, Conversion Start Input B.
		• •
		Logic inputs. These logic inputs are used to initiate
		conversions on the analog input channels.
		For simultaneous sampling of all input channels,
		CONVST A and CONVST B can be shorted together, and
		a single convert start signal can be applied.
	CONVST A, CONVST	Alternatively, CONVST A can be used to initiate
9,10	В	simultaneous sampling: V1, V2, V3, and V4 for the
		CBM76AD06; CONVST B can be used to initiate
		simultaneous sampling on the other analog inputs: V5,
		V6, V7, and V8 for the CBM76AD06; This is possible only
		when oversampling is not switched on. When the
		CONVST A or CONVST B pin transitions from low to
		high, the front-end track-and-hold circuitry for the
		respective analog inputs is set to hold.
		Reset Input. When set to logic high, the rising edge of
		RESET resets the CBM76AD06. The device should
		receive a RESET pulse directly after power-up. The RESET
11	RESET	high pulse should typically be 50 ns wide. If a RESET
		pulse is applied during a conversion, the conversion is
		aborted. If a RESET pulse is applied during a read, the
		contents of the output registers reset to all zeros.
		Parallel Data Read Control Input When the Parallel
		Interface Is Selected (RD)/ Serial Clock Input When the
		Serial Interface Is Selected (SCLK). When both \overline{CS} and
12		RD are logic low in parallel mode, the output bus is
	RD/SCLK	enabled. In serial mode, this pin acts as the serial clock
		input for data transfers. The CS falling edge takes the
		DOUTA and DOUTB data output lines out of three-state
		and clocks out the MSB of the conversion result. The
		rising edge of SCLK clocks all subsequent data bits onto
		the DOUTA and DOUTB serial data outputs. For more

		information, see the Conversion Control section.
		Chip Select. This active low logic input frames the data
		transfer. When both CS and RD are logic low in
		parallel mode, the DB[15:0] output bus is enabled and
13	CS	the conversion result is output on the parallel data bus
15	CS	lines.
		In serial mode, CS is used to frame the serial read
		transfer and clock out the MSB of the serial output data.
		Busy Output. This pin transitions to a logic high after
		both CONVST A and CONVST B rising edges and
		indicates that the conversion process has started. The
		BUSY output remains high until the conversion process
		for all channels is complete. The falling edge of BUSY
14	BUSY	signals that the conversion data is being latched into
		the output data registers and is available to read after a
		Time t4. Any data read while BUSY is high must be
		completed before the falling edge of BUSY occurs.
		Rising edges on CONVST A or CONVST B have no effect
		while the BUSY signal is high.
		Digital Output. The FRSTDATA output signal indicates
		when the first channel, V1, is being read back on the
		parallel, byte, or serial interface. When the \overline{CS} input is
		high, the FRSTDATA output pin is in three-state. The
		falling edge of \overline{CS} takes FRSTDATA out of three-state.
		In parallel mode, the falling edge of \overline{RD} corresponding
		to the result of V1 then sets the FRSTDATA pin high,
15	FRSTDATA	indicating that the result from V1 is available on the
		output data bus. The FRSTDATA output returns to a
		logic low following the next falling edge of \overline{RD} . In serial
		mode, FRSTDATA goes high on the falling edge of $\overline{\text{CS}}$
		because this clocks out the MSB of V1 on DOUTA. It
		returns low on the 16th SCLK falling edge after the CS
		falling edge. See the Conversion Control section for
		more details.
	<u> </u>	

22 to 16	DB[6:0]	Parallel Output Data Bits, DB6 to DB0. When PAR/SER/BYTE SEL = 0, these pins act as three-state parallel digital input/output pins. When CS and RD are low, these pins are used to output DB6 to DB0 of the conversion result. When PAR/SER/BYTE SEL = 1, these pins should be tied to AGND. When operating in parallel byte interface mode, DB[7:0] outputs the 16-bit con-version result in two RD operations. DB7 (Pin 24) is the MSB; DB0 is the LSB.
23	V_{DRIVE}	Logic Power Supply Input. The voltage (2.3 V to 5.25 V) supplied at this pin determines the operating voltage of the interface. This pin is nominally at the same supply as the supply of the host interface (that is, DSP and FPGA).
24	DB7/DOUTA	Parallel Output Data Bit 7 (DB7)/Serial Interface Data Output Pin (DOUTA). When PAR/SER/BYTE SEL = 0, this pins acts as a three-state parallel digital input/output pin. When CS and RD are low, this pin is used to output DB7 of the conversion result. When PAR/SER/BYTE SEL = 1, this pin functions as DOUTA and outputs serial conversion data (see the Conversion Control section for more details). When operating in parallel byte mode, DB7 is the MSB of the byte.
25	DB8/DOUTB	Parallel Output Data Bit 8 (DB8)/Serial Interface Data Output Pin (DOUTB).When PAR/SER/BYTE SEL = 0, this pin acts as a three-state parallel digital input/output pin. When CS and RD are low, this pin is used to output DB8 of the conversion result. When PAR/SER/BYTE SEL = 1, this pin functions as DOUTB and outputs serial conversion data (see the Conversion Control section for more details).
31 to 27	DB[13:9]	Parallel Output Data Bits, DB13 to DB9. When $\overline{PAR}/SER/BYTE$ SEL = 0, these pins act as three-state parallel digital input/output pins. When \overline{CS} and \overline{RD} are low, these pins are used to output DB13 to DB9 of

		the conversion result. When $\overline{PAR}/SER/BYTE$ SEL = 1,
		these pins should be tied to AGND.
		Parallel Output Data Bit 14 (DB14)/High Byte Enable
		(HBEN). When \overline{PAR} / SER/BYTE SEL = 0, this pin acts as a
		three-state parallel digital output pin. When \overline{CS} and
		RD are low, this pin is used to output DB14 of the
		conversion result. When $\overline{PAR}/SER/BYTE SEL = 1$ and
		DB15/BYTE SEL = 1, the CBM76AD06 operate in parallel
32	DB14/ HBEN	byte interface mode. In parallel byte mode, the HBEN
		pin is used to select whether the most significant byte
		(MSB) or the least significant byte (LSB) of the
		conversion result is output first.When HBEN = 1, the
		MSB is output first, followed by the LSB. When HBEN =
		0, the LSB is output first, followed by the MSB.In serial
		mode, this pin should be tied to GND.
		Parallel Output Data Bit 15 (DB15)/Parallel Byte Mode
	DD45 (DVTF CF)	Select (BYTE SEL). When PAR/SER/BYTE SEL = 0, this pin
		acts as a three-state parallel digital output pin. When
		$\overline{\text{CS}}$ and $\overline{\text{RD}}$ are low, this pin is used to output DB15 of
		the conversion result. When $\overline{PAR}/SER/BYTE$ SEL = 1, the
33		BYTE SEL pin is used to select between serial interface
55	DB15/ BYTE SEL	mode and parallel byte interface mode (see Table 4).
		When \overline{PAR} /SER/BYTE SEL = 1 and DB15/BYTE SEL = 0,
		the CBM76AD06 operates in serial interface mode.
		When \overline{PAR} /SER/BYTE SEL = 1 and DB15/BYTE SEL = 1,
		the CBM76AD06 operates in parallel byte interface
		mode.
		Internal/External Reference Selection Input. Logic input.
34		If this pin is set to logic high, the internal reference is
	REF SELECT	selected and enabled. If this pin is set to logic low, the
		internal reference is disabled and an external reference
		voltage must be applied to the REFIN/REFOUT pin.
26.20	DECCAR	Decoupling Capacitor Pin for Voltage Output from
36,39	REGCAP	Internal Regulator.These output pins should be

		decoupled separately to AGND using a 1 μ F capacitor. The voltage on these pins is in the range of 2.5 V to 2.7 V.
42	REFIN/REFOUT	Reference Input (REFIN)/Reference Output (REFOUT). The on-chip reference of 2.5 V is available on this pin for external use if the REF SELECT pin is set to logic high. Alternatively, the internal reference can be disabled by setting the REF SELECT pin to logic low, and an external reference of 2.5 V can be applied to this input (see the Internal/External Reference section). Decoupling is required on this pin for both the internal and external reference options. A 10 μ F capacitor should be applied from this pin to ground close to the REFGND pins.
43,46	REFGND	Reference Ground Pins. These pins should be connected to AGND.
44,45	REFCAPA, REFCAPB	Reference Buffer Output Force/Sense Pins. These pins must be connected together and decoupled to AGND using a low ESR, 10 μF ceramic capacitor. The voltage on these pins is typically 4.5 V.
49	V1	Analog Input. This pin is a single-ended analog input. The analog input range of this channel is determined by the RANGE pin.
50,52	V1GND, V2GND	Analog Input Ground Pins. These pins correspond to Analog Input Pin V1 and Analog Input Pin V2. All analog input AGND pins should connect to the AGND plane of a system.
51	V2	Analog Input. This pin is a single-ended analog input. The analog input range of this channel is determined by the RANGE pin.
53	V3	Analog Input 3.this is an AGND pin.
54	V3GND	Analog Input Ground Pin.this is an AGND pin.
55	V4	Analog Input 4.this is an AGND pin.

56	V4GND	Analog Input Ground Pins. All analog input AGND pins should connect to the AGND plane of a system.
57	V5	Analog Inputs. These pins are single-ended analog inputs. The analog input range of these channels is determined by the RANGE pin.
58	V5GND	Analog Input Ground Pins. All analog input AGND pins should connect to the AGND plane of a system.
59	V6	Analog Inputs. These pins are single-ended analog inputs.
60	V6GND	Analog Input Ground Pins. All analog input AGND pins should connect to the AGND plane of a system.
61	V7	Analog Input Pin. this is an AGND pin.
62	V7GND	Analog Input Ground Pin. this is an AGND pin.
63	V8	Analog Input Pin. this is an AGND pin.
64	V8GND	Analog Input Ground Pin. this is an AGND pin.

Typical Performance Characteristics

Temperature range is from -40°C to +85°C. The CBM76AD06 is functional up to 105°C with throughput rates < 160 kSPS. Specifications are guaranteed for the operating temperature range of -0°C to +85°C only.

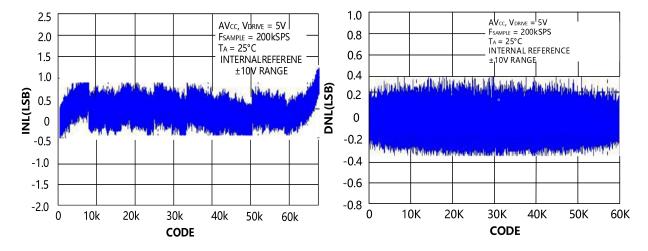


Figure 9. CBM76AD06 Typical INL, ±10 V Range

Figure 10. CBM76AD06 Typical DNL, ±10 V Range

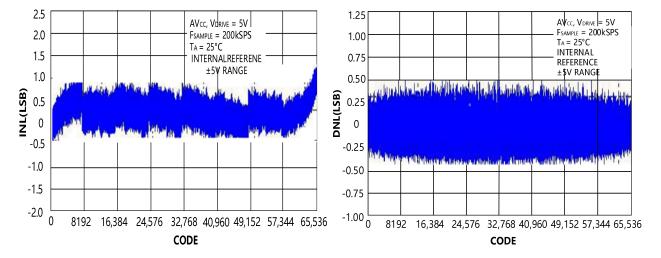


Figure 11.CBM76AD06 Typical INL, ±5V Range

Figure 12.CBM76AD06 Typical DNL, ±5 V Range

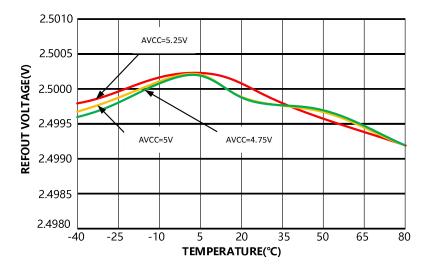


Figure 13.Reference Output Voltage vs. Temperature for Different Supply Voltages

Application Information

INTERNAL/EXTERNAL REFERENCE

The CBM76AD06 contain an on-chip 2.5 V band gap reference. The REFIN/REFOUT pin allows access to the 2.5 V reference that generates the on-chip 4.5 V reference internally, or it allows an external reference of 2.5 V to be applied to the CBM76AD06. An externally applied reference of 2.5 V is also gained up to 4.5 V, using the internal buffer. This 4.5 V buffered reference is the reference used by the SAR ADC.

The REF SELECT pin is a logic input pin that allows the user to select between the internal reference and an external reference. If this pin is set to logic high, the internal reference is selected and enabled. If this pin is set to logic low, the internal reference is disabled and an external reference voltage must be applied to the REFIN/REFOUT pin. The internal reference buffer is always enabled. After a reset, the CBM76AD06 operate in the reference mode selected by the REF SELECT pin. Decoupling is required on the REFIN/REFOUT pin for both the internal and external reference options. A 10 μ F ceramic capacitor is required on the REFIN/REFOUT pin. The CBM76AD06 contain a reference buffer configured to gain the REF voltage up to ~4.5 V, as shown in Figure 14. The REFCAPA and REFCAPB pins must be shorted together externally, and a ceramic capacitor of 10 μ F applied to REFGND, to ensure that the reference buffer is in closed-loop operation. The reference voltage available at the REFIN/REFOUT pin is 2.5 V.

When the CBM76AD06 are configured in external reference mode, the REFIN/REFOUT pin is a high input impedance pin. For applications using multiple CBM76AD06 devices, the following configurations are recommended, depending on the application requirements.

External Reference Mode

One ADR421 external reference can be used to drive the REFIN/REFOUT pins of all CBM76AD06 devices (see Figure 15). In this configuration, each REFIN/REFOUT pin of the CBM76AD06 should be decoupled with at least a 100 nF decoupling capacitor.

Internal Reference Mode One CBM76AD06 device, configured to operate in the internal reference mode, can be used to drive the remaining CBM76AD06 devices, which are configured to operate in external reference mode (see Figure 16). The REFIN/ REFOUT pin of the CBM76AD06, configured in internal reference mode, should be decoupled using a 10 µF ceramic decoupling capacitor. The other CBM76AD06 devices, configured in external reference mode, should use at least a 100 nF decoupling capacitor on their REFIN/REFOUT pins.

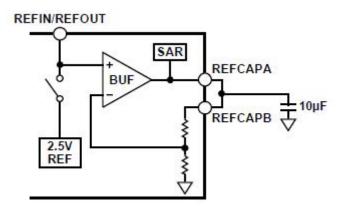


Figure 14. Reference Circuitry

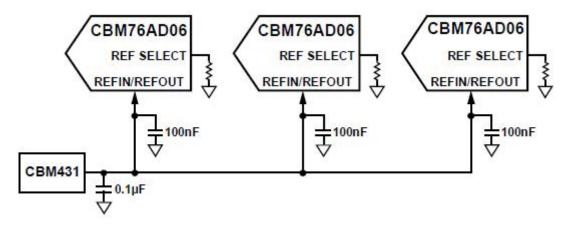


Figure 15. Single External Reference Driving Multiple CBM76AD06 REFIN Pins

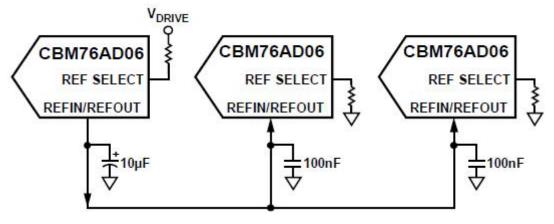


Figure 16. Internal Reference Driving Multiple CBM76AD06 REFIN Pins

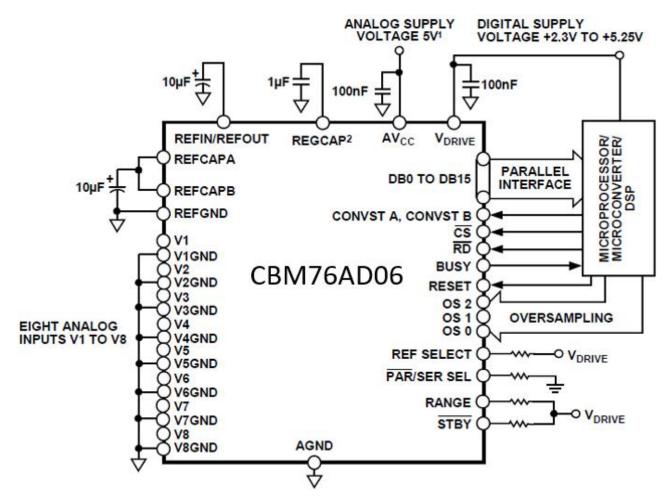


Figure 17. CBM76AD06 Typical Connection Diagram

Figure 17 shows the typical connection diagram for the CBM76AD06. There are four AV_{CC} supply pins on the part, and each of the four pins should be decoupled using a 100 nF capacitor at each supply pin and a 10μ F capacitor at the supply source. The CBM76AD06 can operate with the internal reference or an externally applied reference. In this configuration, the CBM76AD06 is configured to operate with the internal reference. When using a singleCBM76AD06 device on the board, the REFIN/REFOUT pin should be decoupled with a 10μ F capacitor. Refer to the Internal/External Reference section when using an application with multiple CBM76AD06 devices. The REFCAPA and REFCAPB pins are shorted together and decoupled with a 10μ F ceramic capacitor.

The V_{DRIVE} supply is connected to the same supply as the processor. The V_{DRIVE} voltage controls the voltage value of the output logic signals. For layout, decoupling, and grounding hints, see the Layout Guidelines section. After supplies are applied to the CBM76AD06, a reset should be applied to the CBM76AD06 to ensure that it is configured for the correct mode of operation.

POWER-DOWN MODES

Two power-down modes are available on the CBM 76AD06: standby mode and shutdown mode.

The STBY pin controls whether the CBM76AD06 is in normal mode or in one of the two power-down modes.

The power-down mode is selected through the state of the RANGE pin when the STBY pin is low.

Table 3 shows the configurations required to choose the desired power-down mode. When the CBM76AD06 is placed in standby mode, the current consumption is 8 mA maximum and power-up time is approximately 100 µs because the capacitor on the REFCAPA and REFCAPB pins must charge up. In standby mode, the on-chip reference and regulators remain powered up, and the amplifiers and ADC core are powered down.

When the CBM76AD06 is placed in shutdown mode, the current consumption is 6 μ A maximum and power-up time is approximately 13ms (external reference mode). In shut-down mode, all circuitry is powered down. When the CBM76AD06 is powered up from shutdown mode, a RESET signal must be applied to the CBM76AD06 after the required power-up time has elapsed.

Table 3. Power-Down Mode Selection

Power-Down Mode	STBY	RANGE
Standby	0	1
Shutdown	0	0

CONVERSION CONTROL

Simultaneous Sampling on All Analog Input Channels

The CBM76AD06 allow simultaneous sampling of all analog input channels. All channels are sampled simul-taneously when both CONVST pins (CONVST A, CONVST B) are tied together. A single CONVST signal is used to control both CONVST x inputs. The rising edge of this common CONVST signal initiates simultaneous sampling on all analog input channels.

The CBM76AD06 contains an on-chip oscillator that is used to perform the conversions. The conversion time for all ADC channels is t_{CONV} . The BUSY signal indicates to the user when conversions are in progress, so when the rising edge of CONVST is applied, BUSY goes logic high and transitions low at the end of the entire conversion process. The falling edge of the BUSY signal is used to place all eight track-and-hold amplifiers back into track mode. The falling edge of BUSY also indicates that the new data can now be read from the parallel bus (DB[15:0]), the DOUTA and DOUTB serial data lines, or the parallel byte bus, DB[7:0].

Simultaneously Sampling Two Sets of Channels

The CBM76AD06 also allow the analog input channels to be sampled simultaneously in two sets. This can be used in power-line protection and measurement systems to compensate for phase differences introduced by PT and CT transformers. In a 50 Hz system, this allows for up to 9° of phase compensation; and in a 60 Hz system, it allows for up to 10° of phase compensation.

This is accomplished by pulsing the two CONVST pins independently and is possible only if oversampling is not in use. CONVST A is used to initiate simultaneous sampling of the first set of channels (V1 to V4 for the CBM76AD06); and CONVST B is used to initiate simultaneous sampling on the second set of analog input channels (V5 to V8 for the CBM76AD06), as illustrated in Figure 18. On the rising edge of CONVST A, the track-and-hold amplifiers for the first set of channels are placed into hold mode. On the rising edge of CONVST B, the track-and-hold amplifiers for the second set of channels are placed into hold mode. The conversion process begins once both rising edges of CONVST x have occurred; therefore BUSY goes high on the rising edge of the later CONVST x signal. In Timing Specification, Time t5 indicates the maximum allowable time between CONVST x sampling points.

There is no change to the data read process when using two separate CONVST x signals. Connect all unused analog input channels to AGND. The results for any unused channels are still included in the data read because all channels are always converted.

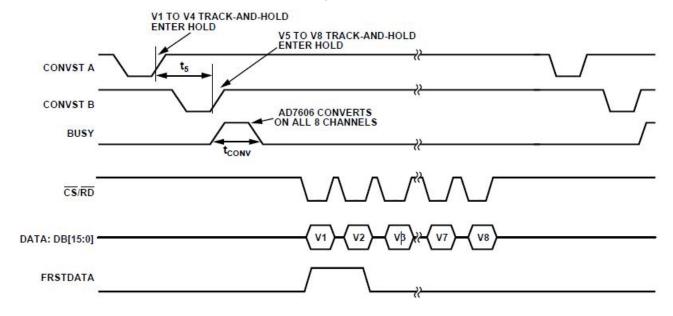


Figure 18. CBM76AD06 Simultaneous Sampling on Channel Sets While Using Independent CONVST A and CONVST B

Signals—Parallel Mode

DIGITAL INTERFACE

The CBM76AD06 provide three interface options: a parallel interface, a high speed serial interface, and a parallel byte interface. The required interface mode is selected via the PAR/SER/BYTE SEL and DB15/BYTE SEL pins.

Table 4. Interface Mode Selection

PAR/SER/BYTE SEL	DB15	Interface Mode
0	0	Parallel interface mode
1	0	Serial interface mode
1	1	Parallel byte interface mode

Table 5. Oversample Bit Decoding

OS[2:0]	OS Ratio	SNR 5 V Range	SNR 10V Range	3 dB BW 5 V	3 dB BW 10 V	Maximum
		(dB)	(dB)	Range (kHz)	Range (kHz)	Throughput
						CONVST
						Frequency
						(kHz)
000	No OS	89	90	15	22	200
001	2	91.2	92	15	22	100
010	4	92.6	93.6	13.7	18.5	50
011	8	94.2	95	10.3	11.9	25
100	16	95.5	96	6	6	12.5
101	32	96.4	96.7	3	3	6.25
110	64	96.9	97	1.5	1.5	3.125
111	Invalid					

Package Outline Dimensions

LQFP-64

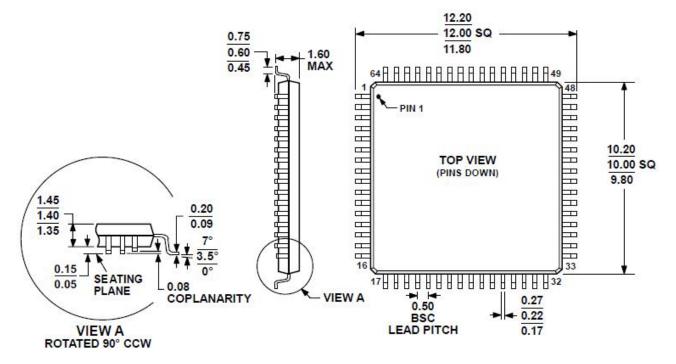


Figure 19.64-Lead Low Profile Quad Flat Package [LQFP]

Package/Ordering Information

MODEL	ORDERING NUMBER	TEMPERATURE	PACKAGE DESCRIPTION	PACEAGE OPTION	MAKING INFORMATION
CBM76AD06Q		-40°C-85°C	LQFP-64		